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Abstract

The diagnosis of benign and malignant brain tumors from MRI images is a fundamental challenge
in Artificial Intelligence and Biomedical Engineering, as the early identification of these lethal
lesions plays a decisive role in improving patient outcomes and survival. This research presents a
comprehensive system for the automatic segmentation and classification of brain tumors using
advanced image processing and machine learning techniques. The dataset used is BraTS, which
includes standardized MRI images with uniform intensity, brightness, and color distribution. The
proposed method, by utilizing optimal preprocessing, multi-scale feature extraction, and a fine-
tuned machine learning model, achieved superior performance compared to previous methods.
Evaluation results indicate a segmentation accuracy (Dice Score) of 93.62%, a Mean Squared
Error (MSE) of 0.85, a Peak Signal-to-Noise Ratio (PSNR) of 41.70 dB, and a sensitivity of
84.66%. This performance introduces the proposed system as an accurate and reliable tool for
early diagnosis and tumor segmentation in clinical applications.
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case with ID : 89812 have Benign

case with ID : 89813 Malingal ------ Error: suspicious one
case with ID : 898143 have Malignan

case with ID : 89827 have Malignan

case with ID : 898431 have Benign

case with ID : 89864002 have Malignan

case with ID : 898677 have Malignan

case with ID : 898678 have Malignan

case with ID : 89869 Malingal ------ Error: suspicious one
case with ID : 898690 have Malignan

case with ID : 899147 have Malignan

case with ID : 899187 have Malignan

case with ID : 899667 have Benign

case with ID : 899987 have Benign

case with ID : 9010018 have Benign

case with ID : 901011 have Malignan
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1. Mean square error (MSE)

2. Peak signal-to-noise ratio (PSNR)
3. Dignal-to-noise-ratio (SNR)

4. accuracy
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